Dilate Family

In this activity you will dilate an independent variable and compare its motion to the motion of its dependent variable.

DILATE A POINT

Begin by dilating a point and describing how the variables behave.

- 1. In your browser open geometricfunctions.org/fc/unit1/dilate-family/.
- 2. Use the first three tools $\begin{bmatrix} \bullet^{x} \\ Independent \end{bmatrix}$ $\begin{bmatrix} s = 2.0 \\ \bullet^{c} \\ Rule \end{bmatrix}$ $\begin{bmatrix} s = 2.0 \\ \bullet^{c} \\ Dependent \end{bmatrix}$ to create a dilate function.

s = 2.0

- 3. Drag independent variable x and observe the behavior of $D_{C,s}(x)$.
- **Q1** Turn on tracing for both variables, drag *x*, and draw a picture of the result in the space below on the left. Be sure to mark *x*, *C*, and $D_{C,s}(x)$ in your picture.
- **Q2** Change the scale factor *s* to 0.50, erase the traces, and drag again. Draw a picture of the result below on the right.

S = 2 *S* = 0.5

Q3 As you drag *x*, how does $D_{C,s}(x)$ behave? Fill in the blanks below.

s = 0.50	Drag x left	Drag x up
Which way does $D_{C,s}(x)$ move?		
Which variable moves faster?		

Q4 Drag *x* to try to find fixed points of the dilate function. (Remember, a *fixed point* is a place where *x* and $D_{C,s}(x)$ come together at the same time.)

What did you find out?

USE DIFFERENT SCALE FACTORS

- 5. On **page 2** figure out how to attach independent variable *x* to a polygon.
- **Q5** Construct a dilate function and drag or animate *x* around the polygon. How are the traces of the dependent variable related to the shape of the polygon?

Q6 Try some different dilate functions, using different center points and different scales. What do you notice about the sizes and shapes of the two traces?

- **Q7** On page 3 you can use negative scale factors. When you use a negative scale factor, what do you notice about the motion of the variables?
- **Q8** What effect does a negative scale factor have on the shape of the traces?

s = -1.00	Drag x left	Drag x up
Which way does $D_{C,s}(x)$ move?		
Which variable moves faster?		
Which makes a bigger design?		

Q9 What do you think would happen if you make s = 0.00? Test your guess.